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Figure 1: Visualizing ocean salinity with different colormaps. (a) A white-blue colormap used by domain scientists, where the
boundary characteristics in the highlighted regions are not clearly revealed; (b) our domain expert limits the data range between
31 and 41 psu; (c) applying histogram equalization [20] to shift the colormap in (a); (d) the colormap generated by adapting the
colormap in (a) to the data with our method.

ABSTRACT

Colormapping is an effective and popular visual representation to
analyze data patterns for 2D scalar fields. Scientists usually adopt
a default colormap and adjust it to fit data in a trial-and-error pro-
cess. Even though a few colormap design rules and measures are
proposed, there is no automatic algorithm to directly optimize a
default colormap for better revealing spatial patterns hidden in un-
evenly distributed data, especially the boundary characteristics. To
fill this gap, we conduct a pilot study with six domain experts and
summarize three requirements for automated colormap adjustment.
We formulate the colormap adjustment as a nonlinear constrained
optimization problem, and develop an efficient GPU-based imple-
mentation accompanying with a few interactions. We demonstrate
the usefulness of our method with two case studies.
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alization application domains—Scientific visualization

1 INTRODUCTION

Scientific simulations and applications produce massive 2D scalar
fields: temperature in meteorology, density in physics, and diffusion
in aerodynamics are all examples. 2D scalar field visualization plays
an essential role for scientists to discriminate values, understand
patterns and analyze trends that are hidden in data. The most effec-
tive and popular visual representation for 2D scalar fields is color
mapping [3, 21, 22], which aims to map distinguishable colors in
a given colormap to quantitative data values. For 2D scalar field
analysis, inspecting patterns is one of the most important task for
users, and during this task, users’ perception for patterns is heavily
affected by the colormap [22]. A good colormap makes patterns
clearly visible, while a bad one might mislead readers [16].

In practice, scientists often select an existing colormap via visual-
ization tools (e.g., SciVisColor [2], ColorMeasures [7]), and apply it
to data through color mapping schemes (e.g., linear mapping). One
challenge in this procedure is caused by the inconsistency between
the wide range of data and the nuanced range of interesting pat-
terns. To reveal data patterns, scientists usually interactively adjust
a chosen colormap in a trial-and-error manner, which is a tedious
procedure especially for unevenly distributed data.

In the visualization community, plenty of guidance rules have
been proposed for colormap design [7]. Several previous works
address the importance of data distribution [17] for colormap design.
For example, Schulze-Wollgast et al. [18] and Tominski et al. [20]
propose to modulate control points of a colormap based on statistical
metadata or histogram distribution. However, such data distribution
based methods might not be able to clearly visualize the spatial
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patterns of interest, see an example in Fig. 1. So far, there is no
automatic colormap design algorithm that explicitly takes the spatial
patterns into account for refining a given colormap.

To fill this gap, we propose a data-driven colormap adjustment
method to reveal spatial patterns in 2D scalar field visualization,
based on our requirement analysis with domain experts. We formu-
late colormap adjustment as a nonlinear constrained optimization
problem, by iteratively modulating parametric positions of control
points in the colormap based on the boundary characteristics [8].
We further incorporate user interactions into our optimization frame-
work, including ROI exploration and control point customization.

The main contributions of our approach are as follows:
• We summarize three requirements for automatic colormap

adjustment through discussions with domain experts.
• We propose a novel method to automatically optimize col-

ormap for revealing discernible data patterns.
• We demonstrate the effectiveness of our method via two cases.

2 RELATED WORK

In this section, we investigate on data-aware colormap design mea-
sures. We refer readers to prior literature [19], [4] and [23] for a
complete review of colormap design in visualization.

The importance of data and tasks has been addressed by previous
works [9,14,22]. The most pioneering work is the system, PRAVDA-
Color, proposed by Bergman et al. [3], which builds a taxonomy for
colormap design with consideration of spatial data frequencies and
representative tasks. Similar ideas can be found in ColorBrewer [6]
and ColorCAT [10]. These methods usually apply similar colormap
design rules for data that are categorized in the same group. How-
ever, data with noticeably different patterns may be assigned with
the same colormap, because of the limited number of categories. In
our work, we aim to refine a given colormap automatically so as to
better reveal continuous data patterns.

We propose to automatically adjust control points in a given col-
ormap for a richer visualization of continuous data patterns. The
methods proposed by Schulze-Wollgast et al. [18] and Tominski et
al. [20] have the similar goal, which both leverage data distribution
to modulate parametric positions of control points. Specifically,
Schulze-Wollgast et al. [18] extract statistical metadata (e.g. median,
mean or a user defined value) and adjust the colormap by shifting a
control point to the corresponding position of the inferred metadata.
Followed by their work, Tominski et al. [20] propose histogram
equalization to improve color encoding for highlighting and segmen-
tation tasks, aiming to shift more colors to high density data ranges.
Instead of adjusting the colormap to highlight a specific value or
to homogenize perceptual data distribution, our method optimizes
the colormap to represent continuous data patterns by taking into
account the boundary characteristics [8].

3 REQUIREMENT ANALYSIS

To achieve our goal of optimizing colormap automatically, we firstly
conduct a requirement analysis through interviews with six domain
experts (E1-E6) from both visualization and scientific community.
During the study, each domain expert is required to answer two
5-point Likert-scale questions based on a few prototype results, and
give 1-5 sentences feedback to each question.

• Would you find it beneficial for the visualization users (e.g.,
designers, scientists) to have an “Auto Adjust” button next to a
colormap, so that it automatically tries to match the data and
provide a richer visualization?
(1) strongly not beneficial (2) not beneficial (3) neutral
(4) beneficial (5) strongly beneficial

• Would you expect desired results of such “Auto Adjust” to be
similar to the prototype results provided by our technique?
(1) strongly dissimilar results expected (2) dissimilar results
expected (3) neutral (4) similar results expected (5)
strongly similar results expected
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Figure 2: An illustration of colormap definition. (a) An unevenly
distributed data is encoded with a gray colormap. (b) By shifting
parametric position of control points in the gray colormap, we can
produce a new colormap by linear interpolations.

Based on the answers and feedback, we summarize three re-
quirements for an automatic colormap optimization approach. The
original answers and feedback from domain experts can be found in
our supplementary materials.
R1: Adjust colormap to exhibit patterns even for the full data
range. Our domain experts (E1 and E3) pointed out that scientists
often set the minimum and maximum data range manually, to exhibit
features not visible for the full data range under a standard linear
color mapping. A good manual adjustment requires not only domain
knowledge, but also comprehensive understandings on the analysis
task. Otherwise, the process will be tedious and time-consuming.
R2: Preserve primary colors in the colormap. E6 mentioned that
she prefers to use a familiar colormap, because her experiences
working with it can improve the efficiency of data analysis, even it
might produce poor visualization and misleading artifacts [11, 15].
Therefore, it is necessary to preserve primary colors in the process
of colormap optimization.
R3: Support interactive user-control for data exploration. E4
pointed out that users would like to keep control over a visualization
system, and E5 mentioned that oceanologists often care more about
specific regions of interest. In addition, E2 mentioned that the
benefit of the colormap adjustment in medical visualization is highly
depended on applications and user preferences. Therefore, our
optimization framework also can support user interactions for a
better data exploration.

4 TECHNIQUE

Based on the three requirements, we formulate an algorithm to
enhance boundary characteristics for 2D scalar field visualization,
improving their accessibility to domain experts for visual analysis.
Preliminaries. A colormap in our method is defined as a list of 3D
colors C = {C1,C2, ...,Cn} in CIELAB colorspace. Mapping colors
to data requires an association between colors C and parametric data
values T = {t1, t2, ..., tn}(0≤ t∗ ≤ 1), denoted as ξ : T →C.

To build such an association for continuous 2D scalar field,
we define the discrete colormap as a set of control points and a
mapping function (see Fig. 2). Control points refer to w constant
colors c = {c1,c2, ...,cw} and corresponding parametric positions
p = {p1, p2, ..., pw}(0≤ p∗ ≤ 1) on the colormap. A mapping func-
tion describes transitions between every two control points, correlat-
ing continuous parametric positions to discrete colors. We utilize a
piecewise linear mapping function to interpolate colors [13] between
two neighboring control points, shown as below:

ĉ =
cw− cw−1

pw− pw−1
× (p̂− pw−1)+ cw−1, pw−1 < p̂ < pw (1)
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(a) Input (b) β = 0 (c) β = 0.4 (d) β = 1

Figure 3: Different settings of parameter β . (a) The input is ocean velocity at the North Atlantic Ocean, visually encoded with a white-red
colormap. (b)-(d) Our optimized results with β = 0,0.4,1 respectively.

By iteratively applying the function to neighboring control points,
we can recover a new colormap, denoted as ξ = f (T ; p,c).

4.1 Data-Driven Colormap Optimization
To meet R1-R2, the algorithm should be able to exhibit invisible
features and preserve original colors.
Problem Definition. Given a 2D scalar field x with m data samples,
and w control points (p,c), our goal is to obtain w parametric posi-
tions p̄ = {p̄1, p̄3, ..., p̄w} for the control points (with two endpoints
constant by default), such that the new color-encoded data can reveal
hidden data patterns. To map the new colormap to data, we first
parameterize data values into the range between 0 and 1, denoted
as x = {x1,x2, ...xm}(0≤ x∗ ≤ 1). Colors on each parametric data
value can be inferred from ξ = f (x; p̄,c), abbreviated as f (x; p̄).

We formulate the colormap adjustment process as a nonlinear
constrained optimization problem by solving an energy function
using sequential quadratic programming [12]. Specifically, we seek
p̄ that minimizes the energy function E(x; p̄) :

argmin
p̄

E(x; p̄) = B(x; p̄)+βF(p̄) (2)

The function consists of a boundary term B and a fidelity term F ,
balanced by a parameter β . A larger β results in a colormap closer
to the input one, see Fig. 3. In our implementation, we set β = 0.1
by default.
Boundary Term According to R1, an automatic algorithm is nec-
essary for pursuing a richer visualization. We refer to a richer
visualization as revealing more continuous boundary structures that
indicate different data patterns. The boundary model proposed by
Kindlmann and Durkin [8] is adopted to infer data patterns, for its
good performance in discerning boundaries in volume rendering.

Our basic idea is to emphasize original boundary structures in
the color encoded data. We first estimate the likelihood q(x) of
how likely a data value x belongs to boundaries, and multiply it by
corresponding local differences in the visualization:

B(x; p̄) =−
m

∑
i=1

q(xi)∗ ∑
j∈Ω

∥∥ f (xi; p̄)− f (x j; p̄)
∥∥2 (3)

where Ω denotes the neighbors of a data value xi.
The essential feature in calculating boundary likelihood q is to

associate data value to boundary regions. Kindlmann and Durkin [8]
have proposed a mathematical model for mapping data value x∗ to
an approximate position t along an ideal boundary 1:

−σ2h(x∗)
g(x∗)

≈ t (4)

where g(x∗) is the average of the first directional derivatives over
all the positions with value x∗; likewise, h(x∗) is the average of
the second directional derivatives at positions with value x∗. σ is
a parameter to control the amount of boundary blurring in ideal
boundary, defined as σ

√
e = f ′(0)

f ′′(−σ)
, where f ′(0) and f ′′(−σ) are

the maximum values of first and second derivatives in the ideal

1The ideal boundary is an integration of a step function and a Gaussian.
Please refer to [8] for more details.

boundary model. In our situation, we estimate it according to the
maximum first and second derivatives of the entire data.

Eq. 4 builds a correlation between data values and its distances
to the boundary. Data value with higher first derivatives and lower
second derivatives is considered as closer distance to the boundary.
Thus, we provide a boundary emphasizing function b(t) = e−η |t|

to set higher likelihood for data value with closer distance to the
boundary. Our boundary likelihood component is defined as below:

q(x∗) = e−η | −σ2h(x∗)
g(x∗) | (5)

where η is an empirical boundary emphasizing factor and it is set to
0.01 by default in our implementation.
Fidelity Term According to R2, we propose a fidelity term to pre-
serve the order of primary colors and avoid significant colormap
changes during optimization. The fidelity term aims to examine
the consistency of the original parametric positions p of control
points and the adjusted parametric positions p̄. Instead of simply
calculating the Euclidean distance between the original and adjusted
parametric positions, we take advantages of an accumulative arc
length function ζ (monotonically increasing) to narrow down the
optimization space. We formulate the idea as below:

F(x; p̄) =
w

∑
i=1
‖ζ (p̄i)−ζ (pi)‖2 , s.t. ζ̄

′(p̄i)> 0 (6)

where ζ is the accumulated arc length function of the input colormap
in CIELAB colorspace. ζ̄ is a piecewise linear function built from
{ζ (p̄i),1≤ i≤ w}. ζ̄ ′(p̄i) is the first derivative of ζ̄ at position p̄i.

4.2 User-defined Interactions
According to R3, we provide two interactive operators: ROI explo-
ration and control point customization.
ROI Exploration. To support interactive exploration for data pat-
terns in specific region of interest, we provide a simple “outside”
lasso tool (see the white dotted region in Fig. 4). The boundary like-
lihood component inside the lasso region is multiplied by a weight
to strengthen corresponding features.

Fig. 4(a) shows the ROI exploration on a radiotherapy dose data,
encoded with the popular rainbow colormap in scientific visualiza-
tion [5]. As shown in Fig. 4(b), more variations along the bound-
ary of the tumor dose region are revealed. Dose variations inside
the tumor region are clearly shown with our ROI exploration tool
(Fig. 4(c)). We will describe domain experts’ feedback in Sec. 5.
Control Point Customization. The essential idea of our optimiza-
tion method is to modify parametric positions of control points, with
two constant endpoints by default. To support customization of arbi-
trary constant control point, we provide a selection tool for adding
or deleting constant control points in colormap.

Fig. 5 illustrates the results of before and after control point
customization, based on an ocean salinity data around the Southwest
Europe. Both optimized results (with two or three constant control
points) reveal global patterns on the top of Mediterranean Sea.

5 CASE STUDY

We have implemented our method in C++ and tested with an Intel
Core i7-6700K (4GHz CPU) with 16GB memory. We also develop
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Figure 4: We show the radiotherapy dose data encoded by a rainbow
colormap in (a). Our optimized results before and after applying
ROI exploration tool are shown in (b) and (c) respectively.

a GPU implementation in CUDA that runs on an NVIDIA GTX
980 graphics card with 8GB display memory. We adopt a commer-
cial sequential quadratic programming solver provided by Artelys
Knitro [1] to optimize our energy function.

To evaluate the effectiveness and usefulness of our algorithm, we
invited four domain experts (E1-E2 and E5-E6) to answer a 5-point
Likert scale questionnaire. There are two categories of questions:

• Comparison with alternatives: does the left visualization
reveal more reasonable data variations than the right one?

• ROI exploration: do you think our tool has provided an ap-
propriate control for the colormap optimization?

Besides answers to the questionnaire, domain experts are requested
to label exemplar regions and explain their reasons with 1-5 sen-
tences. Please refer to our supplementary material for more details.
Case I: The first case study focuses on an ocean salinity data pro-
vided by our domain expert E1. As shown in Fig. 1(a), the salinity
dissolved in ocean water is inhomogeneously distributed, with high
values in the Mediterranean Sea and relatively low values in the
Baltic Sea. Fig. 1(b) illustrates the visualization tuned by E1, by
limiting data range to 31 and 41 psu. In (c) and (d), we show visual-
izations of histogram equalization [20] and our method.

We invited E1 and E5 to evaluate the four visualizations in Fig. 1.
Six comparison with alternative questions are posed to the domain
experts. According to E1 and E5’s feedback, both (a) and (c) are not
suitable to show the global salinity distribution. Compared with (a)
and (c), our visualization in (d) reveals clearly the prominent high
salinity patterns on the North and South of the Equator in the Atlantic
Ocean. Regarding comparisons between our result and E1’s manual
adjustment in (b), E1 agreed that our result was comparable with
his adjustment. Our visualization reveals the information of fresher
(less salty) regions (in Baltic & Black Sea), but does not depict
variations of higher salinity values on the East of the Mediterranean
Sea. On the contrary, E1’s visualization ignores information at
fresher regions, but resolves variations in high salinity regions. This
analysis was also supported by E5, “both figures lay out details
structure in different areas”. Though our method enables a better
visualization in the global data range, we cannot always ensure a
good representation in the local data range. For example, variations
between 31 to 34 psu at the North of Pacific Ocean are not clearly
revealed in our result. An interactive tool could be further developed
to narrow down this gap.
Case II: For the second case study, we investigate on the radiother-
apy dose data from a head cancer patient, which is superimposed on
an anatomical CT head with 75% opacity. We invited E2 and E6 to
assess the effectiveness and usefulness of our ROI exploration tool.
Two comparison with alternative questions are posed to them, for
the comparison of our visualization effect with that of the original
colormap. And one ROI exploration question is posed to assess the
usefulness of the interactive operator.

The radiotherapy dose data is visually encoded with a widely
used rainbow colormap in the scientific community. As shown in

Two Constant Control Points 

Three Constant Control Points 

(input)

(input)

(output)

(output)

Figure 5: Here we show our optimized colormap before and after
selecting a constant middle control point.

Fig. 4(a), the tumor region is positioned on the right face with high
dose on it. In this visualization, it is hard to discern intra-tumor
characteristics. For our optimized colormap shown in Fig. 4(b),
both E2 and E6 agreed that more data variations can be observed
compared with that in Fig. 4(a). E1 mentioned that “real” high
values within the tumor region can be observed in our visualization,
as well as significant radiations around the right eye of the patient.
And E6 pointed out that in our visualization, the boundary of the
tumor region was more discernible. For our visualization in Fig. 4(c)
with an interactive ROI tool, E2 expressed that “It is really nice what
you can do within a ROI” and “looking only at the high values area
is great”, since “true” high values within the specified area can be
observed. E6 mentioned that the ROI tool helped her focus on data
variations inside the tumor region. Furthermore, E2 commented
that a doctor would not like the useless homogeneity up to 38Gy. A
background masking tool for hiding areas outside the ROI region
could be developed in the future.

6 CONCLUSION

We present a data-driven colormap optimization method for 2D
scalar field visualization. We conduct a pilot study under the guid-
ance of six domain experts, and summarize three requirements for
automated colormap adjustment. Following these requirements, we
formulate colormap adjustment as a nonlinear constrained optimiza-
tion problem, in order to reveal more data patterns with minimal
shifting the control points of the input colormap. We develop an
effective GPU-based implementation and interactive tool to sup-
port intuitive exploration. We demonstrate the effectiveness of our
approach with two case studies.

While our case study only investigates comparisons with alter-
natives and ROI exploration results, in the future, we will design a
task driven case study and conduct an evaluation for the interactive
tool. Furthermore, we leave it as future work to develop automated
colormaps for more complex data, such as sequential 2D and 3D
scalar fields.
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